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1. Introduction

Although much has been learned about superstring amplitudes using the Ramond-Neveu-

Schwarz (RNS) formalism, the need to sum over spin structures obscures the role of space-

time supersymmetry. Using the light-cone Green-Schwarz (GS) formalism, one can easily

compute four-point tree and one-loop amplitudes with half of the supersymmetry mani-

fest. But higher-point and higher-loop amplitudes are more difficult to compute in this

light-cone formalism, especially amplitudes that involve the ten-dimensional ε tensor. Al-

though a covariant version of the GS formalism has recently been developed by Lee and

Siegel [1, 2], this covariant GS formalism has not been used to compute higher-loop ampli-

tudes or amplitudes involving the ε tensor.

Over the last six years, a manifestly super-Poincaré covariant superstring formalism

has been developed which involves bosonic ghost variables λα satisfying the pure spinor

constraint λγmλ = 0 [3]. Tree amplitudes and one-loop four-point amplitudes were com-

puted in [4] using a “minimal” version of the formalism, and these computations were

later extended to two-loop four-point amplitudes in [5] and to d = 11 one-loop computa-

tions in [6]. When all external states are bosons, these amplitudes were shown in [7 – 9] to

coincide with the standard RNS result.

All of these amplitudes are expressed as integrals of superfields in “pure spinor super-

space” which, in d = 10, involves five fermionic θ coordinates covariantly contracted with
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three bosonic pure spinors. When all superfields are on-shell, the superspace integrands

are annihilated by the pure spinor BRST operator Q = λαDα. As shown in [3], this implies

that the amplitude expressions are invariant under all sixteen d = 10 supersymmetries even

if the pure spinor superspace only involves five θ’s.

More recently, a non-minimal version of the pure spinor formalism has been developed

which involves both a pure spinor λα and its complex conjugate λα [10]. The amplitude

prescription using the non-minimal version is considerably simpler than in the minimal

version since there are no picture-changing operators and Lorentz invariance is manifest at

all stages in the computation. Furthermore, the amplitude prescription in the non-minimal

formalism can be related to the prescription in topological string theory where the b ghost

is replaced by a composite operator.

For tree amplitudes, it is trivial to show that the minimal and non-minimal pure spinor

formalisms give the same answers. But for loop amplitudes, there are some differences

between the minimal and non-minimal computations which makes it non-trivial to prove

their equivalence. In the first part of this paper, the non-minimal pure spinor formalism

will be used to re-compute the massless four-point one-loop and two-loop amplitudes and

equivalence with the minimal computations will be proven. In terms of integrals over pure

spinor superspace, the kinematic factors in these one-loop and two-loop amplitudes will be

shown to be proportional to

K1−loop = 〈(λA)(λγmW )(λγnW )Fmn〉, (1.1)

K2−loop = 〈(λγmnpqrλ)FmnFpqFrs(λγsW )〉,

where Aα, W α, and Fmn are the spinor gauge superfield, spinor superfield-strength, and

vector superfield-strength of super-Yang-Mills, and the pure spinor measure factor 〈 〉 is

defined such that 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. Using the super-Yang-Mills equa-

tions of motion, it is easy to check that the integrands in 1.1 are annihilated by λαDα, so

these kinematic factors are supersymmetric.

The non-minimal formalism will then be used to compute in a supersymmetric manner

the gauge variation of the massless six-point one-loop amplitude in Type-I superstring

theory. Since this computation involves the ten-dimensional ε tensor, it has never been

performed using the light-cone GS formalism. After expressing the gauge variation of the

six-point amplitude as a term at the boundary of moduli space, it will be shown that the

anomaly is proportional to the pure spinor superspace integral

Kanomaly = 〈(λγmW )(λγnW )(λγpW )(WγmnpW )〉, (1.2)

whose purely bosonic contribution is the standard ε10F
5 term.

Further investigation upon the appearance of ε10 in 1.2 led us to the discovery of a

pure spinor superspace integral, namely,

〈(λγrW 1)(λγsW 2)(λγtW 3)(θγmγnγrstW
4)〉,

from which the t8 and ε10 tensors naturally emerge in a unified manner, in the form

ηmntm1n1...m4n4

8 − 1
2εmnm1n1...m4n4

10 . This differs from the RNS formalism where the t8 and
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ε10 tensors come from different spin structures. It may be possible that this pure spinor

superspace integral is related to the five-point one-loop amplitudes involving the heterotic

ε10BtrF 4 and Type IIA ε10t8BR4 terms, which would be useful for finding the supersym-

metric completions of these terms.

It is interesting to compare these computations using the pure spinor formalism with

the recently developed method of Lee and Siegel for computing one-loop amplitudes. The

method of Lee and Siegel is based on the “ghost pyramid” covariant quantization of the

Green-Schwarz superstring, in which the BRST operator has a complicated structure in-

volving an infinite set of ghosts [1]. However, the vertex operators in the Lee-Siegel formal-

ism are relatively simple and have a very similar structure to the integrated vertex operator

in the pure spinor formalism.

In the one-loop computations performed in [2] using the Lee-Siegel method, all vertex

operators are integrated and there are no picture-changing operators. Furthermore, there

is no superspace integration using this method so the amplitudes are expressed in terms of

the component fields. This is the analog of the F1 picture in the RNS formalism where all

vertex operators are in the zero picture.

On the other hand, in the one-loop computations using the pure spinor formalism,

one of the vertex operators is unintegrated, the b ghost is a composite operator playing

the role of a picture-raising operator, and the amplitudes are expressed as integrals over

pure spinor superspace. This is the analog of the F2 picture in the RNS formalism where

the unintegrated vertex operator is in the −1 picture and the picture-raising operator is

inserted on top of the b ghost.

For certain one-loop computations such as the four-point and five-point massless ampli-

tudes computed in [2] there is no disadvantage in treating all vertex operators in integrated

form. However, for the anomaly computation presented here, it is definitely more conve-

nient to leave one unintegrated vertex operator in a “different picture” from the integrated

vertex operators. It would be interesting to see how to compute this anomaly using the

Lee-Siegel method, and if one needs to introduce some analog of picture-changing operators.

In section 2, we review the non-minimal amplitude prescription for one-loop and two-

loop amplitudes. In section 3, we compute the massless four-point one-loop and two-loop

amplitudes and show agreement with the computations using the minimal formalism. In

section 4, we compute the gauge variation of the massless six-point one-loop amplitude.

In section 5, we explain how t8 and ε10 tensors naturally emerge from the integration over

pure spinor superspace. And in appendix A, we list all the pure spinor superspace identities

used in this paper and present two other representations for t8 and ε10 tensors using pure

spinors.

2. Non-minimal amplitude prescription

The prescription in the non-minimal pure spinor formalism for computing N -point one-loop
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and two-loop scattering amplitudes is given by [10]

A1−loop =

∫

dτ〈N (

∫

dwµ(w)b(w))V1(z1)
N
∏

r=2

∫

dzrUr(zr)〉, (2.1)

and

A2−loop =

∫

dτ1dτ2dτ3〈N
3

∏

s=1

(

∫

dwsµs(ws)b(ws))

N
∏

r=1

∫

dzrUr(zr)〉. (2.2)

where τi are the Teichmuller parameters, µi are the Beltrami differentials, Vr and Ur

are the unintegrated and integrated vertex operators, and 〈 〉 denotes the functional

integral over the Green-Schwarz-Siegel fields [xm, θα, dα], over the pure spinor ghosts λα and

their conjugate momenta wα, and over the non-minimal fields [λα, rα] and their conjugate

momenta [wα, sα].

As in topological string theory, the b-ghost is a composite operator satisfying {Q, b} =

T where T is the stress-tensor, and has the explicit form

b = sα∂λα +
2Πm(λγmd) − Nmn(λγmn∂θ) − J(λ∂θ) − (λ∂2θ)

4(λλ)
(2.3)

+
(λγmnpr)(dγmnpd + 24NmnΠp)

192(λλ)2
−

(rγmnpr)(λγmd)Nnp

16(λλ)3

+
(rγmnpr)(λγpqrr)NmnN qr

128(λλ)4

where Πm = ∂xm + 1
2(θγm∂θ) is the supersymmetric momentum and Nmn = 1

2(wγmnλ)

and J = λw are the pure spinor Lorentz and ghost currents.

Integration over the zero modes of the bosonic and fermionic worldsheet fields naively

gives 0/0, so it is necessary to insert a BRST-invariant operator N = e{Q,χ} which regular-

izes this zero mode integration. Since N = 1 + {Q,Ω}, the choice of χ does not affect the

scattering amplitude. A convenient choice is χ = −λαθα−
∑g

I=1(
1
2N I

mn(sIγmnλ)+JI(sIλ)),

which implies that

N = exp(−λαλα − rαθα) (2.4)

exp

(

g
∑

I=1

[ −
1

2
N I

mnN
mnI

− JIJ
I
−

1

4
(sIγmnλ)(λγmndI) + (sIλ)(λdI)]

)

,

where [N I
mn, JI ,Nmn, J

I
, dI

α, sIα] denote the g zero modes of these spin one fields on a

genus g surface.

Finally, for massless external states, the unintegrated vertex operator is V = λαAα

and the integrated vertex operator is

U = ∂θαAα + ΠmAm + dαW α +
1

2
NmnFmn.
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The [Aα, An,W α,Fmn] superfields describe super-Yang-Mills theory [11] and have the θ-

expansions [12]

Aα(x, θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγmnpθ) + . . .

Am(x, θ) = am − (ξγmθ) −
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + . . .

W α(x, θ) = ξα −
1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmnθ)α(θγnγpqθ)∂mFpq + . . .

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq + . . .,

where am(x) and ξα(x) describe the gluon and gluino fields, Fmn = 2∂[man], and . . . involve

derivatives of am and ξα.

To compute the functional integral over the worldsheet fields, one first uses the free

field OPE’s to integrate out the non-zero modes. Note that as in topological string theory,

computation of the partition function for the non-zero modes is trivial because of cancel-

lations between bosonic and fermionic fields of equal spin. The worldsheet zero modes are

then integrated out using the measure factors described in [10] and the regulator N of 2.4.

3. Four-point one-loop and two-loop computations

As was shown in [4] and [9] using the minimal pure spinor formalism, the kinematic factors

for the massless four-point one-loop and two-loop amplitudes are proportional to the pure

spinor superspace integrals

K1−loop = 〈(λA)(λγmW )(λγnW )Fmn〉, (3.1)

K2−loop = 〈(λγmnpqrλ)FmnFpqFrs(λγsW )〉, (3.2)

where Aα, W α, and Fmn are the spinor gauge superfield, spinor superfield-strength, and

vector superfield-strength of the four external super-Yang-Mills multiplets, the expressions

of 3.1 and 3.2 are summed over permutations of the four external superfields, and the

pure spinor measure factor 〈 〉 is defined such that 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1.

In [8] and [9], the purely bosonic contributions to these pure spinor superspace integrals

where shown to correctly reproduce the t8 index contractions of the four Yang-Mills field-

strengths.

It will now be shown that the non-minimal computation of the four-point massless

one-loop and two-loop amplitudes contains the same kinematic factors as in [8, 9]. Since

the moduli space part of the amplitude computations in the minimal and non-minimal

formalisms is the same, this proves the equivalence of the two prescriptions for these am-

plitudes.

3.1 One-loop computation

Using the one-loop prescription of 2.1, the regulator N of 2.4 can provide a maximum of

eleven dα zero modes, which are multiplied by the eleven sα zero modes. So the remaining
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five dα zero modes must come either from the vertex operators or from the single b ghost.

Since the three integrated vertex operators can provide at most three dα zero modes through

the terms (W αdα), the single b ghost of 2.3 must provide two dα zero modes through the

term
(λγmnpr)(dγmnpd)

192(λλ)2.
(3.3)

After integrating over the zero modes of the dimension one fields (wα, wα, dα, sα) using

the measure factors described in [10], one is left with an expression proportional to

∫

d16θ

∫

[dλ][dλ][dr](λλ)−2(λ)4(λγmnpr)AWWW exp(−λλ − rθ) (3.4)

=

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ − rθ)(λλ)−2(λ)4(λγmnpD)AWWW (3.5)

where Dα = ∂
∂θα

+ 1
2 (γmθ)α∂m is the usual superspace derivative and the index contractions

on

(λ)4(λγmnpD)AWWW (3.6)

have not been worked out. Note that 3.5 is obtained from 3.4 by writing rα exp(−rθ) =
∂

∂θα
exp(−rθ), integrating by parts with respect to θ, and using conservation of momentum

to ignore total derivatives with respect to x. Furthermore, the factor of (λ)4 in 3.4 comes

from the λ in the unintegrated vertex operator, the 11 factors of λ and λ which multiply

the zero modes of dα and sα in N , the factor of (λ)−8(λ)−8 in the measure factor of wα

and wα, and the factor of (λ)−3 in the measure factor of sα.

Fortunately, it is easy to show there is a unique Lorentz-invariant way to contract

the indices in 3.6. To show this, first choose a Lorentz frame in which the only non-zero

component of λα is in the λ+ direction. This choice preserves a U(1) × SU(5) subgroup of

SO(10), under which a Weyl spinor Uα and an anti-Weyl spinor Vα decompose as

Uα −→

(

U+
5

2

, U 1

2
[ab], U

a
− 3

2

)

, Vα −→

(

V− 5

2
+, V

[ab]

− 1

2

, V+ 3

2
a

)

, (3.7)

where the subscript denotes the U(1) charge.

Since (λ+)4 carries +10 U(1) charge, (λγmnpD)AWWW must carry −10 U(1) charge

which is only possible if (λγmnpD) carries −3 charge, Aα carries −5
2 charge, and each W α

carries −3
2 charge. Contracting the SU(5) indices, one finds that the unique U(1) × SU(5)

invariant contraction of the indices is

(λ+)4(λγabcD)A+W aW bW c. (3.8)

Returing to covariant notation, one can easily see that 3.6 must be proportional to the

Lorentz-invariant expression

(λγmnpD)(λA)(λγmW )(λγnW )(λγpW ), (3.9)

which reduces to 3.8 in the frame where λ+ is the only non-zero component of λα.
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However, to express the kinematic factor as an integral over pure spinor superspace as

in 3.1, it is convenient to have an expression in which all λα’s appear in the combination

(λαλα). If all λ’s appear in this combination, one can use that

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ − rθ)(λλ)−nλαλβλγfαβγ (3.10)

is proportional to

〈λαλβλγfαβγ〉. (3.11)

To convert 3.9 to this form, it is convenient to return to the frame in which λ+ is the

only non-zero component of λα and write 3.8 as

(λ+)4εabcde(λ
[de]

D+ − λ+D[de])A+W aW bW c. (3.12)

Using the superspace equations of motion for Aα and W α, it is easy to show that

D+A+ = D+W a = 0, D[de]A+ + D+A[de] = 0, εabcdeD
[ab]W c = Fde. (3.13)

So 3.12 is proportional to two terms which are

(λ+)4λ+εabcde(D+A[de])W aW bW c and (λ+)4λ+A+W aW bFab. (3.14)

The second term in 3.14 can be easily written in covariant language as

(λλ)(λA)(λγmW )(λγnW )Fmn, (3.15)

which produces the desired pure spinor superspace integral of 3.1. And the first term

in 3.14 can be written in covariant language as

(λλ)
[

(λD)(λγmnA)
]

(λγpW )(WγmnpW ), (3.16)

which produces the pure spinor superspace integral

〈
[

(λD)(λγmnA)
]

(λγpW )(WγmnpW )〉. (3.17)

But since BRST-trivial operators decouple,

〈(λD)
[

(λγmnA)(λγpW )(WγmnpW )
]

〉 = 0,

which implies that 3.17 is equal to

〈(λγmnA)(λD)
[

(λγpW )(WγmnpW )
]

〉. (3.18)

Finally, using the superspace equation that DαW β is proportional to (γmn) β
α Fmn, one

finds that 3.18 is proportional to 3.1. So the non-minimal computation of the kinematic

factor is proportional to the minimal computation of 3.1.

– 7 –
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3.2 Two loops

To compute the kinematic factor at two loops using the non-minimal prescription of 2.2,

first note that the regulator N can provide 22 dα zero modes which are multiplied by the 22

zero modes of sα. So the remaining 10 dα zero modes must come from the four integrated

vertex operators and the three bα ghosts. This is only possible if each integrated vertex

operators provides a dα zero mode through the term (W αdα) and each b ghost provides

two dα zero modes through the term of 3.3.

After integrating over the zero modes of the dimension one fields (wI
α, wIα, dI

α, sIα)

using the measure factors described in [10], one is left with an expression proportional to
∫

d16θ

∫

[dλ][dλ][dr](λλ)−6(λ)6(λγmnpr)3WWWW exp(−λλ − rθ) (3.19)

=

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ − rθ)(λλ)−6(λ)6(λγmnpD)3WWWW (3.20)

where the index contractions on

(λ)6(λγmnpD)3WWWW (3.21)

have not been worked out. Note that the factor of (λ)6 in 3.19 comes from the 11g factors

of λ and λ which multiply the zero modes of dI
α and sI

α in N , the factor of (λ)−8g(λ)−8g in

the measure factor of wI
α and wIα, and the factor of (λ)−3g in the measure factor of sIα.

As in the one-loop four-point amplitude, there is fortunately a unique way of contract-

ing the indices of 3.21 in a Lorentz-invariant manner. Choosing the Lorentz frame where

λ+ is the only non-zero component of λα, one finds that (λ+)6 contributes +15 U(1) charge

so that each (λγmnpD) must contribute −3 charge and each W must contribute −3
2 charge.

Since the −3 component of (λγmnpD) is (λ
[ab]

D+ −λ+D[ab]), and since D+ annihilates the

−3
2 component of W α, the only contribution to 3.6 comes from a term of the form

(λ+)6(λ+)3(D[ab]D[cd]D[ef ])(W gW hW jW k) (3.22)

where the ten SU(5) indices are contracted with two εabcde’s.

The term of 3.22 produces three types of terms depending on how the three D’s act

on the four W ’s. If all three D’s act on the same W , one gets a term proportional to

(λ+)6(λ+)3WWW∂F , which by U(1) × SU(5) invariance must have the form

(λ+)6(λ+)3W aW bW c∂aFbc. (3.23)

And if two D’s act on the same W , one gets a term proportional to (λ+)6(λ+)3FWW∂W ,

which by U(1) × SU(5) invariance must have the form

(λ+)6(λ+)3FbcW
aW b∂aW

c. (3.24)

Finally, if each D acts on a different W , one obtains a term that is proportional to

(λ+)6(λ+)3WFFF , which by U(1) × SU(5) invariance must have the form

(λ+)6(λ+)3FabFcdFefW f εabcde. (3.25)

– 8 –
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The first term in 3.23 vanishes by Bianchi identities. And the second term in 3.24 is

proportional to the first term after integrating by parts with respect to ∂a and using the

equation of motion ∂aW
a = 0. So the only contribution to the kinematic factor comes

from the third term of 3.25, which can be written in Lorentz-covariant notation as

(λλ)3(λγmnpqrλ)FmnFpqFrs(λγsW ). (3.26)

So the non-minimal computation of the two-loop kinematic factor agrees with the minimal

computation of 3.2.

4. Type-I anomaly with pure spinors

It will now be shown that the non-minimal pure spinor formalism computation of the

hexagon gauge anomaly in the Type-I superstring is equivalent to the RNS result of [13].

As will be shown below, the kinematic factor of the hexagon gauge variation can be written

as the pure spinor superspace integral

K = 〈(λγmW 2)(λγnW 3)(λγpW 4)(W 5γmnpW
6)〉,

whose bosonic part is the well-known ε10F
5 RNS result of [13].

As discussed in [14, 15], the anomaly can be easily computed as a surface term which

contributes at the boundary of moduli space. The result can be separated in two parts:

the kinematic factor depending only on momenta and polarizations, and the moduli space

part which depends on the worldsheet surface. We will be interested only in the kinematic

factor, as the moduli space part uses identical computations as in the anomaly analysis

using the RNS formalism.1

4.1 Kinematic factor computation

In the type-I superstring theory with gauge group SO(N), the massless open string six-point

one-loop amplitude is given by

A =
∑

top=P,NP,N

Gtop

∫ ∞

0
dt〈N

∫

dwb(w)(λA1)
6

∏

r=2

∫

dzrUr(zr)〉 (4.1)

where P,NP,N denotes the three possible different world-sheet topologies, each of which

has a different group-factor Gtop [17]. When all particles are attached to one boundary, we

have a cylinder with GP = Ntr(ta1ta2ta3ta4ta5ta6). When particles are attached to both

boundaries, the diagram is a non-planar cylinder, where GNP = tr(ta1ta2)tr(ta3ta4ta5ta6).

And finally, there is the non-orientable Möbius strip where GN = −tr(ta1ta2ta3ta4ta5ta6).

We will be interested in the amplitude when all external states are massless gluons with

polarization er
m i.e. , ar

m(x) = er
meik·x, where m = 0, . . .9 is the space-time vector index and

r is the particle label.2 To probe the anomaly, one can compute 4.1 and substitute one of

1A pedagogical presentation of these computations can be found in [16].
2We will omit the adjoint gauge group index from the polarizations and field-strengths for the rest of

this section.
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the external polarizations for its respective momentum. However, instead of first computing

the six-point amplitude and substituting em → km in the answer, we will first make the

gauge transformation in 4.1 and then compute the resulting correlation function. This will

give us the anomaly kinematic factor directly.

Under the super-Yang-Mills gauge transformation

δAα = DαΩ, δAm = ∂mΩ, (4.2)

the integrated vertex operator
∫

dzU changes by the surface term
∫

dzδU =
∫

dz∂Ω, and

the unintegrated vertex operator changes by the BRST-trivial quantity δ(λA) = λαDαΩ =

QΩ. Choosing Ω(x, θ) = eik·x has the same effect as changing em → km, which is the

desired gauge transformation to probe the anomaly.

To compute the gauge anomaly, it will be convenient to choose the gauge transforma-

tion to act on the polarization e1
m in the unintegrated vertex operator, so that the gauge

variation of 4.1 is

δA =
∑

top=P,N,NP

Gtop

∫ ∞

0
dt〈N

∫

dwb(w)(QΩ(z1))

6
∏

r=2

∫

dzrUr(zr)〉. (4.3)

“Integrating” Q by parts inside the correlation function will only get a contribution from the

BRST variation of the b-ghost, which is a derivative with respect to the modulus [14, 18].

So

δA = −
∑

top

Gtop

∫ ∞

0
dt

d

dt
〈Ω(z1)N

6
∏

r=2

∫

dzrUr(zr)〉

≡ −K
∑

top

Gtop

[

Btop(∞) − Btop(0)
]

, (4.4)

where the moduli space part of the anomaly is encoded in the function

Btop(t) ≡

∫ t

0
dz6

∫ z6

0
dz5

∫ z5

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 〈

6
∏

r=1

: eikr ·xr :〉top,

and K = 〈NU2U3U4U5U6〉. From 4.4, it is clear that the anomaly comes from the boundary

of moduli space.

To compute the kinematic factor K, observe that there is an unique way to absorb

the 16 zero modes of dα, 11 of sα and 11 of rα. The regularization factor N must provide

11 dα, 11 sα and 11 rα zero modes. The five remaining dα zero modes must come from

the external vertices3 through (dW)5. As in the computations of the previous section, the

kinematic factor is thus given by a pure spinor superspace integral involving 3 λ’s and 5

W ’s, as can be easily verified by integrating all the zero mode measures except [dλ], [dλ]

and [dr]. To find out how the indices are contracted in K, choose the reference frame where

3It follows from this zero mode counting that the anomaly trivially vanishes for amplitudes with less

than six external massless particles.
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only λ+ 6= 0. Then one can easily check that the unique U(1)×SU(5)-invariant contraction

is

K = (λ+)3εabcdeW
a
2 W b

3W c
4W d

5 W e
6 ,

which in SO(10)-covariant notation translates into

K = (λγmW2)(λγnW3)(λγpW4)(W5γmnpW6). (4.5)

4.2 Bosonic contribution to the kinematic factor

When all external states are gluons, there is only one possibility to saturate the pure

spinor superspace correlation λ3θ5. Each superfield W α(θ) must contribute one θ through

the term −1
4(γmnθ)αFmn. Thus, the kinematic factor 4.5 is proportional to

(λγpγm2n2θ)(λγqγm3n3θ)(λγrγm4n4θ)(θγm5n5γpqrγ
m6n6θ)F 2

m2n2
. . .F 6

m6n6
. (4.6)

We will now demonstrate the equivalence with the RNS anomaly result of [13] by proving

that

(λγpγm1n1θ)(λγqγm2n2θ)(λγrγm3n3θ)(θγm4n4γpqrγ
m5n5θ) =

1

45
εm1n1...m5n5 . (4.7)

We will first show that the correlation in 4.7 is proportional to ε10 by checking its

behavior under a parity transformation. Using the language of [4], we can rewrite 4.7 as

(T−1)(αβγ)[ρ1ρ2ρ3ρ4ρ5]T(αβγ)[δ1δ2δ3δ4δ5](γ
m1n1)δ1ρ1

(γm2n2)δ2ρ2
(γm3n3)δ3ρ3

(γm4n4)δ4ρ4
(γm5n5)δ5ρ5

,

(4.8)

where T and T−1 are defined by

(T−1)(α1α2α3)[δ1δ2δ3δ4δ5] = (γm)α1δ1(γn)α2δ2(γp)α3δ3(γmnp)
δ4δ5 (4.9)

T(α1α2α3)[δ1δ2δ3δ4δ5] = γm
α1δ1

γn
α2δ2

γp
α3δ3

(γmnp)δ4δ5 ,

and the α-indices are symmetric and gamma matrix traceless, and the δ-indices are anti-

symmetric. Since a parity transformation has the effect of changing a Weyl spinor ψα to

an anti-Weyl spinor ψα, it follows from the definitions of 4.9 that a parity transformation

exchanges T ↔ T−1. Furthermore, since a parity transformation also changes

(γmn)δρ → (γmn) ρ
δ = −(γmn)ρδ,

it readily follows that the kinematic factor 4.8 is odd under parity, so it is proportional to

ε10. Finally, the proportionality constant of 1
45 in 4.7 can be explicitly computed using the

identities listed in appendix A.

5. t8 and ε10 from pure spinor superspace

In this section, we describe some interesting identities involving the t8 and ε10 tensors and

show how they are closely related when obtained from pure spinor superspace integrals.

This is different from computations in the RNS formalism where t8 and ε10 come from

correlation functions with different spin structures.
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Since the one-loop t8F
4 and ε10BF4 terms are expected to be related by non-linear

supersymmetry, there might be a common superspace origin for the t8 and ε10 tensors.

This suggests looking for a BRST-closed pure spinor superspace integral involving four

super-Yang-Mills superfields whose bosonic part involves both the t8 and ε10 tensors. One

such BRST-closed expression we found is

(λγrW 1)(λγsW 2)(λγtW 3)(θγmγnγrstW
4). (5.1)

Although 5.1 is not spacetime supersymmetric because of the explicit θ, it might be related

to a supersymmetric expression in a constant background where the N = 1 supergravity

superfield Gmα satisfies Gmα = γmαβθβ + bmn(γnθ)α for constant bmn.

When restricted to its purely bosonic part, 5.1 defines the following 10-dimensional

tensor:

tmnm1n1m2n2m3n3m4n4

10 = (λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγmγnγabcγ
m4n4θ). (5.2)

Using γmγn = γmn + ηmn we obtain

tmnm1n1m2n2m3n3m4n4

10 = +(λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγmnγabcγ
m4n4θ)

+ηmn(λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγabcγ
m4n4θ).(5.3)

And using the identities listed in appendix A, one can check that4

tmnm1n1m2n2m3n3m4n4

10 = −
2

45

[

ηmntm1n1m2n2m3n3m4n4

8 −
1

2
εmnm1n1m2n2m3n3m4n4

]

(5.4)

where the t8 tensor is defined as usual by its contraction with four field-strengths to give

tm1n1...m4n4

8 F 1
m1n1

. . .F 4
m4n4

= +8(F 1F 2F 3F 4) + 8(F 1F 3F 2F 4) + 8(F 1F 3F 4F 2)

−2(F 1F 2)(F 3F 4) − 2(F 2F 3)(F 4F 1) − 2(F 1F 3)(F 2F 4).

It is also interesting to contrast the similarity between ε10 and t8 when written in terms

of the T and T−1 tensors:

εmnm1n1...m4n4 ∝ (T−1)(αβγ)[ρ0ρ1ρ2ρ3ρ4]T(αβγ)[δ0δ1δ2δ3δ4](γ
mn)δ0ρ0

. . .(γm4n4)δ4ρ4
(5.5)

tm1n1...m4n4

8 ∝ (T−1)(αβγ)[κρ1ρ2ρ3ρ4]T(αβγ)[κδ1δ2δ3δ4](γ
m1n1)δ1ρ1

. . .(γm4n4)δ4ρ4
,

which shows, in a pure spinor superspace language, how one can “obtain” the t8 tensor from

ε10: it is a matter of removing (γmn)δ0ρ0
and contracting the associated spinorial indices

in T and T−1. So when using pure spinors, there is a close relation between these two

different-looking tensors.
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A. Pure spinor superspace identities

In this appendix we list all the identities used throughout this paper. They were obtained

with the inestimable help of Ulf Gran’s GAMMA package [19] along with some custom-

made functions to handle ε10 tensors. The convention used for antisymmetrization of n

indices is that one must divide by n!. Furthermore, it is sometimes more convenient to use

the notation δa1...an

m1...mn

= δ
[a1

m1
. . .δ

an]
m1

, e.g.,

δa1a2

m1m2
=

1

2!

(

δa1

m1
δa2

m2
− δa2

m1
δa1

m2

)

,

and – for notational simplicity – not care about the difference between downstairs and

upstairs indices in the formulæ.

A.1 Identities ad nauseam

The computation of a correlation like

〈(λγmγm1n1θ)(λγnγm2n2θ)(λγpγm3n3θ)(θγm4n4γmnpγ
m5n5θ)〉

or

〈(λγmθ)(λγaγm1n1θ)(λγbcnγm2n2θ)(θγm3n3γabcγ
m4n4θ)〉

requires a lot of identities, which will be listed below.

We first define (θγm4n4γmnpγ
m5n5θ) = Gm4n4m5n5

mnpr1r2r3
(θγr1r2r3θ). One can check that

Gm4n4m5n5

mnpr1r2r3
= +

1

6
εmm4m5nn4n5pr1r2r3 − 24δnp

n4n5
δmm4m5

r1r2r3
+ 12δm5n5

n4p δmm4n
r1r2r3

(A.1)

−6δm5n5

np δmm4n4

r1r2r3
+ 12δm4n4

n5p δmm5n
r1r2r3

− 6δm4n4

np δmm5n5

r1r2r3

−2δm4n4

m5n5
δmnp
r1r2r3

+ [mnp] + [m4n4] + [m5n5],

and +[mnp] + [m4n4] + [m5n5] means that one must antisymmetrize in those indices.

The computation of t8 also requires the identity (θγabcγmnθ) = (θγr1r2r3θ)Kabcmn
r1r2r3

,

where

Kabcmn
r1r2r3

= −ηcnδabm
r1r2r3

+ ηcmδabn
r1r2r3

+ ηbnδacm
r1r2r3

− ηbmδacn
r1r2r3

− ηanδbcm
r1r2r3

+ ηamδbcn
r1r2r3

The following identity is also useful5

(λγmnpθ)(λγqrsθ) = −
1

96
(θγtuvθ)(λγmnpγtuvγ

qrsλ) (A.2)

≡ −
1

96
(λγabcdeλ)(θγtuvθ)fmnpqrs

abcdetuv

where

fmnpqrs
abcdetuv = 18(δrs

uvδ
abcde
mnpqt − δnp

uvδabcde
qrsmt + δmn

qr δabcde
pstuv) (A.3)

+54(δnv
rs δabcde

mpqtu − δrv
npδ

abcde
qsmtu + δps

tv δabcde
mnqru) + [mnp] + [qrs] + [tuv].

5This identity was suggested by Pierre Vanhove during discussions of [8].
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Using the gamma matrix identities

(λγmγnpθ) = (λγmnpθ) + ηmn(λγpθ)− ηmp(λγnθ),

(λγabcγdeθ) = +(λγabcdeθ) − 2δbc
de(λγaθ) + 2δac

de(λγbθ) − 2δab
de(λγcθ)

−δc
e(λγabdθ)+δc

d(λγabeθ)+δb
e(λγacdθ)−δb

d(λγaceθ)−δa
e (λγbcdθ)+δa

d(λγbceθ)

and the definitions above, all correlations considered in this paper turn into a linear com-

bination of the following building blocks:

〈(λγmθ)(λγnθ)(λγpθ)(θγijkθ)〉=
1

120
δmnp
ijk (A.4)

〈(λγmnpθ)(λγqθ)(λγtθ)(θγijkθ)〉=
1

70
δ
[m
[q ηt][iδ

n
j δ

p]
k] (A.5)

〈(λγtθ)(λγmnpθ)(λγqrsθ)(θγijkθ)〉=
1

8400
εijkmnpqrst + (A.6)

+
1

140

[

δ
[m
t δn

[iη
p][qδr

j δ
s]
k] − δ

[q
t δr

[iη
s][mδn

j δ
p]
k]

]

−
1

280

[

ηt[iη
v[qδr

j η
s][mδn

k]δ
p]
v − ηt[iη

v[mδn
j ηp][qδr

k]δ
s]
v

]

.

〈(λγmnpqrθ)(λγstuθ)(λγvθ)(θγfghθ) =
1

35
ηv[mδn

[sδ
p
t ηu][fδq

gδ
r]
h] −

2

35
δ
[m
[s δn

t δp

u]δ
q

[f δr]
g δv

h] (A.7)

+
1

120
εmnpqr

abcde

(

1

35
ηv[aδb

[sδ
c
t ηu][fδd

gδ
e]
h]

−
2

35
δ
[a
[s δb

t δ
c
u]δ

d
[fδe]

g δv
h]

)

〈(λγmnpqrλ)(λγuθ)(θγfghθ)(θγjklθ)〉= −
4

35

[

δ
[m
[j δn

k δp
l]δ

q
[f δr]

g δu
h] + δ

[m
[f δn

g δp
h]δ

q
[jδ

r]
k δu

l] (A.8)

−
1

2
δ
[m
[j δn

k ηl][fδp
gδq

h]η
r]u −

1

2
δ
[m
[f δn

g ηh][jδ
p
kδq

l]η
r]u

]

−
1

1050
εmnpqr

abcde

[

δ
[a
[j δb

kδ
c
l]δ

d
[fδe]

g δu
h]+δ

[a
[fδb

gδ
c
h]δ

d
[jδ

e]
k δu

l]

−
1

2
δ
[a
[j δb

kηl][fδc
gδ

d
h]η

e]u −
1

2
δ
[a
[f δb

gηh][jδ
c
kδ

d
l]η

e]u
]

〈(λγmnpqrθ)(λγdθ)(λγeθ)(θγfghθ) = −
1

42
δmnpqr
defgh −

1

5040
εmnpqr

defgh (A.9)

〈(λγmnpqrλ)(λγstuθ)(θγfghθ)(θγjklθ)〉 = −
12

35

[

δ
[s
[f δt

gη
u][mδn

h]δ
p
[jδ

q
kδ

r]
l] (A.10)

+δ
[s
[jδ

t
kη

u][mδn
l]δ

p

[fδq
gδ

r]
h] − ηv[sδt

[fηu][mδn
g ηh][jδ

p
kδq

l]δ
r]
v

−ηv[sδt
[jη

u][mδn
k ηl][fδp

gδ
q

h]δ
r]
v

]

−
1

350
εmnpqr

abcde
[

δ
[s
[fδt

gη
u][aδb

h]δ
c
[jδ

d
kδ

e]
l] + δ

[s
[jδ

t
kη

u][aδb
l]δ

c
[f δd

gδ
e]
h]

−ηv[sδt
[fηu][aδb

gηh][jδ
c
kδ

d
l]δ

e]
v

−ηv[sδt
[jη

u][aδb
kηl][fδc

gδ
d
h]δ

e]
v

]

.
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(λγmnpθ)(λγqrsθ)(λγtuvθ)(θγijkθ) =−
3

175

[

− δ[i
a δj

[qδ
k]
r δ

[m
s] δn

[tδ
p]
u δa

v] (A.11)

+δ[i
a δj

[tδ
k]
u δ

[m
v] δn

[qδ
p]
r δa

s] + δ
[i
[qδ

j
rη

k][mηs][tδ
n
uδ

p]
v]

+δa
[tη

b[iδj
uηk][mηv][qδ

n
r ηs]aδ

p]
b

−δa
[qη

b[iδj
rη

k][mηs][tδ
n
uηv]aδ

p]
b − δ

[i
[tδ

j
uηk][mηv][qδ

n
r δ

p]
s]

]

+
1

33600
εabcde

a1a2a3a4a5
fmnpqrs

abcdefgh
[

δ
[t
[f δu

g ηv][a1δa2

h] δ
a3

[i δa4

j δ
a5]
k] + δ

[t
[iδ

u
j ηv][a1δa2

k] δ
a3

[f δa4

g δ
a5]
h]

−ηz[tδu
[fηv][a1δa2

g ηh][iδ
a3

j δa4

k] δ
a5]
z

−ηz[tδu
[iη

v][a1δa2

j ηk][fδa3

g δa4

h] δ
a5]
z

]

.

These identities can be straightforwardly derived. The recipe is the following. One writes

the most general tensor containing Kronecker deltas with the same symmetry properties as

the left hand side and then contracts some appropriate indices to find the coefficients which

satisfy the normalization λ3θ5 = 1. After obtaining all terms containing only Kronecker

deltas one can find terms with ε10 tensors considering the duality properties of the gamma

matrices:

(γm1m2m3m4m5)αβ = +
1

5!
εm1m2m3m4m5n1n2n3n4n5 (γn1n2n3n4n5

)αβ ,

(γm1m2m3m4m5m6) β
α = +

1

4!
εm1m2m3m4m5m6n1n2n3n4 (γn1n2n3n4

) β
α ,

(γm1m2m3m4m5m6m7)αβ = −
1

3!
εm1m2m3m4m5m6m7n1n2n3 (γn1n2n3

)αβ ,

(γm1m2m3m4m5m6m7m8) β
α = −

1

2!
εm1m2m3m4m5m6m7m8n1n2 (γn1n2

) β
α .

The following identities turn out to be useful when doing all these manipulations and

can be derived using the properties of pure spinors and gamma matrices:

(γmnp)αβ (γmnp)
γδ = 48

(

δγ
αδδ

β − δγ
βδδ

α

)

, (λγmψ)(λγmξ) = 0 ∀ψα, ξα (A.12)

(λγmnpqrλ)(λγmnaθ) = 0, (λγmnpqrλ)(λγmθ) = 0 (A.13)

(λγamnθ)(λγaθ) = 2(λγmθ)(λγnθ), (λγabmθ)(λγabnθ) = −4(λγmθ)(λγnθ) (A.14)

(λγmabcnλ)(θγabcθ) = 96(λγmθ)(λγnθ), (A.15)

(λγabcmnθ)(λγabcθ) = −36(λγmθ)(λγnθ), (A.16)

(λγaγbcmnθ)(λγabcθ) = −28(λγmθ)(λγnθ), (A.17)

(λγabcθ)(λγadeθ) = −(λγcdeθ)(λγbθ) + (λγbdeθ)(λγcθ) + (λγbceθ)(λγdθ)

−(λγbcdθ)(λγeθ)− ηce(λγbθ)(λγdθ) + ηcd(λγbθ)(λγeθ)

+ηbe(λγcθ)(λγdθ) − ηbd(λγcθ)(λγeθ) (A.18)
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(λγabcdeθ)(λγaghθ) = +(λγhbcdeθ)(λγgθ) − (λγgbcdeθ)(λγhθ) + (λγbcdθ)(λγeghθ)

−(λγbceθ)(λγdghθ) + (λγbdeθ)(λγcghθ) − (λγcdeθ)(λγbghθ)

−ηhe(λγbcdθ)(λγgθ) + ηhd(λγbceθ)(λγgθ) − ηhc(λγbdeθ)(λγgθ)

+ηhb(λγcdeθ)(λγgθ) + ηge(λγbcdθ)(λγhθ) − ηgd(λγbceθ)(λγhθ)

+ηgc(λγbdeθ)(λγhθ) − ηgb(λγcdeθ)(λγhθ)

(λγabcdeθ)(λγabhθ) = −4ηeh(λγcθ)(λγdθ) + 4ηdh(λγcθ)(λγeθ) − 4ηhc(λγdθ)(λγeθ)

−2(λγcdeθ)(λγhθ)

A.2 Other pure spinor representations for t8 and ε10

The following correlations also give rise to identities for t8 and ε10,

(λγmθ)(λγaW
1)(λγbW

2)(W 3γabnW 4) + perm(1234),

(λγaW 1)(λγbW 2)(λγnW 3)(θγmγabW
4) + perm(1234).

Indeed one can show that

(λγ[m|θ)(λγaγ
m1n1θ)(λγbγ

m2n2θ)(θγm3n3γab|n]γm4n4θ) + p(1234) = −
116

525
εmnm1n1...m4n4

ηmn(λγmθ)(λγaγ
m1n1θ)(λγbγ

m2n2θ)(θγm3n3γabnγm4n4θ) + p(1234) =
16

15
tm1n1...m4n4

8

(λγaγm1n1θ)(λγbγm2n2θ)(λγ[nγm3n3θ)(θγm]γabγ
m4n4θ) + p(1234) =

2

175
εmnm1n1...m4n4

ηmn(λγaγm1n1θ)(λγbγm2n2θ)(λγnγm3n3θ)(θγmγabγ
m4n4θ) + p(1234) = −

16

15
tm1n1...m4n4

8 .
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