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1. Introduction

Although much has been learned about superstring amplitudes using the Ramond-Neveu-
Schwarz (RNS) formalism, the need to sum over spin structures obscures the role of space-
time supersymmetry. Using the light-cone Green-Schwarz (GS) formalism, one can easily
compute four-point tree and one-loop amplitudes with half of the supersymmetry mani-
fest. But higher-point and higher-loop amplitudes are more difficult to compute in this
light-cone formalism, especially amplitudes that involve the ten-dimensional € tensor. Al-
though a covariant version of the GS formalism has recently been developed by Lee and
Siegel [fl, B], this covariant GS formalism has not been used to compute higher-loop ampli-
tudes or amplitudes involving the e tensor.

Over the last six years, a manifestly super-Poincaré covariant superstring formalism
has been developed which involves bosonic ghost variables A\ satisfying the pure spinor
constraint A\ = 0 [f]. Tree amplitudes and one-loop four-point amplitudes were com-
puted in [f] using a “minimal” version of the formalism, and these computations were
later extended to two-loop four-point amplitudes in [[j] and to d = 11 one-loop computa-
tions in [{]. When all external states are bosons, these amplitudes were shown in [[j-[] to
coincide with the standard RNS result.

All of these amplitudes are expressed as integrals of superfields in “pure spinor super-
space” which, in d = 10, involves five fermionic 6 coordinates covariantly contracted with



three bosonic pure spinors. When all superfields are on-shell, the superspace integrands
are annihilated by the pure spinor BRST operator Q = A\*D,,. As shown in [, this implies
that the amplitude expressions are invariant under all sixteen d = 10 supersymmetries even
if the pure spinor superspace only involves five 6’s.

More recently, a non-minimal version of the pure spinor formalism has been developed
which involves both a pure spinor A* and its complex conjugate A, [L0]. The amplitude
prescription using the non-minimal version is considerably simpler than in the minimal
version since there are no picture-changing operators and Lorentz invariance is manifest at
all stages in the computation. Furthermore, the amplitude prescription in the non-minimal
formalism can be related to the prescription in topological string theory where the b ghost
is replaced by a composite operator.

For tree amplitudes, it is trivial to show that the minimal and non-minimal pure spinor
formalisms give the same answers. But for loop amplitudes, there are some differences
between the minimal and non-minimal computations which makes it non-trivial to prove
their equivalence. In the first part of this paper, the non-minimal pure spinor formalism
will be used to re-compute the massless four-point one-loop and two-loop amplitudes and
equivalence with the minimal computations will be proven. In terms of integrals over pure
spinor superspace, the kinematic factors in these one-loop and two-loop amplitudes will be
shown to be proportional to

Ki—toop = (AA) (MY W)(AMY"W) Frnn), (1.1)
KQ—loop = <()‘r7mnpqr>‘)]:mn]:pq]:rs()"VSW»’

where A,, W%, and F,,, are the spinor gauge superfield, spinor superfield-strength, and
vector superfield-strength of super-Yang-Mills, and the pure spinor measure factor ( ) is
defined such that (Ay™8)(M"0)(AP0)(04mnp#)) = 1. Using the super-Yang-Mills equa-
tions of motion, it is easy to check that the integrands in [[.] are annihilated by A\®D,, so
these kinematic factors are supersymmetric.

The non-minimal formalism will then be used to compute in a supersymmetric manner
the gauge variation of the massless six-point one-loop amplitude in Type-I superstring
theory. Since this computation involves the ten-dimensional € tensor, it has never been
performed using the light-cone GS formalism. After expressing the gauge variation of the
six-point amplitude as a term at the boundary of moduli space, it will be shown that the

anomaly is proportional to the pure spinor superspace integral
Kanomaly = <()\7mW)(A’YnW)()‘VpW)(W’Yman)% (1-2)

whose purely bosonic contribution is the standard e;oF® term.
Further investigation upon the appearance of €1g in [[.7 led us to the discovery of a
pure spinor superspace integral, namely,

(MY WHAP W) (M W) (07 et W),

from which the tg and €1y tensors naturally emerge in a unified manner, in the form

g mana _ Lemmanmana - Thig differs from the RNS formalism where the ¢ and



€10 tensors come from different spin structures. It may be possible that this pure spinor
superspace integral is related to the five-point one-loop amplitudes involving the heterotic
e10BtrF* and Type IIA €19ts BR* terms, which would be useful for finding the supersym-
metric completions of these terms.

It is interesting to compare these computations using the pure spinor formalism with
the recently developed method of Lee and Siegel for computing one-loop amplitudes. The
method of Lee and Siegel is based on the “ghost pyramid” covariant quantization of the
Green-Schwarz superstring, in which the BRST operator has a complicated structure in-
volving an infinite set of ghosts [[l]. However, the vertex operators in the Lee-Siegel formal-
ism are relatively simple and have a very similar structure to the integrated vertex operator

in the pure spinor formalism.

In the one-loop computations performed in [[] using the Lee-Siegel method, all vertex
operators are integrated and there are no picture-changing operators. Furthermore, there
is no superspace integration using this method so the amplitudes are expressed in terms of
the component fields. This is the analog of the F; picture in the RNS formalism where all

vertex operators are in the zero picture.

On the other hand, in the one-loop computations using the pure spinor formalism,
one of the vertex operators is unintegrated, the b ghost is a composite operator playing
the role of a picture-raising operator, and the amplitudes are expressed as integrals over
pure spinor superspace. This is the analog of the F» picture in the RNS formalism where
the unintegrated vertex operator is in the —1 picture and the picture-raising operator is

inserted on top of the b ghost.

For certain one-loop computations such as the four-point and five-point massless ampli-
tudes computed in [E] there is no disadvantage in treating all vertex operators in integrated
form. However, for the anomaly computation presented here, it is definitely more conve-
nient to leave one unintegrated vertex operator in a “different picture” from the integrated
vertex operators. It would be interesting to see how to compute this anomaly using the
Lee-Siegel method, and if one needs to introduce some analog of picture-changing operators.

In section 2, we review the non-minimal amplitude prescription for one-loop and two-
loop amplitudes. In section 3, we compute the massless four-point one-loop and two-loop
amplitudes and show agreement with the computations using the minimal formalism. In
section 4, we compute the gauge variation of the massless six-point one-loop amplitude.
In section 5, we explain how tg and €1y tensors naturally emerge from the integration over
pure spinor superspace. And in appendix A, we list all the pure spinor superspace identities
used in this paper and present two other representations for tg and €1¢ tensors using pure
spinors.

2. Non-minimal amplitude prescription

The prescription in the non-minimal pure spinor formalism for computing /N-point one-loop



and two-loop scattering amplitudes is given by [[L]]

N

At toap = / dr(N ( / dwp(w)b(w)Vi (1) [ / a2, Uy (), (2.1)
r=2

and

3 N
As1oop = / dridrdrs(N T]( / dws s (ws)b(ws)) T [ / dz.Up (1)) (2.2)
r=1

s=1

where 7; are the Teichmuller parameters, p; are the Beltrami differentials, V, and U,
are the unintegrated and integrated vertex operators, and ( ) denotes the functional
integral over the Green-Schwarz-Siegel fields [z, ¢, d,,], over the pure spinor ghosts A* and

their conjugate momenta wq, and over the non-minimal fields [\, 7] and their conjugate

momenta [wW®, s%].
As in topological string theory, the b-ghost is a composite operator satisfying {Q, b} =

T where T is the stress-tensor, and has the explicit form

211 (AYmd) — Ny (Ay™00) — J(AOB) — (AD?0)

b= 5%\, + — 2.3
i 400 23)
(me"pr)(dwmnpd + 24N, 11,) B (Twm"pr)(XWmd)an
192(AN)2 16(AN)3
(r~y™"Pr) (Xypqrr)Nmanr
128(AN)4

where II™ = 9z™ + 3(6y™90) is the supersymmetric momentum and Ny, = 1 (wymn)
and J = Aw are the pure spinor Lorentz and ghost currents.

Integration over the zero modes of the bosonic and fermionic worldsheet fields naively
gives 0/0, so it is necessary to insert a BRST-invariant operator N' = el@x} which regular-
izes this zero mode integration. Since N =1+ {Q, Q}, the choice of x does not affect the
scattering amplitude. A convenient choice is x = —Ao0%—>"9_, (3 NL,, (sT4™N)+JL(sTN)),
which implies that

N = exp(—xa)\o‘ —1,0%) (2.4)

g
1 = mnl —=I 1 ~ mn ~
exp <Z[ = N N =TT = (s ) () + <sz><Ad1>]> :

where [NL = J! ,Nmn,jl,dé,sla] denote the g zero modes of these spin one fields on a

genus g surface.

Finally, for massless external states, the unintegrated vertex operator is V = \*A,
and the integrated vertex operator is

1
U=00A, +1I"A,, +d WV + 5N’”“”J—“mn.



The [Aqg, Ap, W, Frun] superfields describe super-Yang-Mills theory [[[1]] and have the 6-
expansions [1J]

1 1 1
Aa(% 9) = §am(7m6)a - g(g'YmH)('Yma)a - ﬁan(VpG)a(‘gfymnpe) +...

1 1
A (2,0) = am — (Eymb) — g(ﬁmv”q@)qu + E(me”q@@p&q@) +...

WO @,0) = € = 2(7™"0) B + 5 (7""0)° (9708 + 35 (0" 0 (03:7°70) O Fy + ..

]:mn(x, 9) = Fon — 2(8[m57n]9) + (HV[m’que)an]qu +.oy

Ry

where a,,(z) and {*(x) describe the gluon and gluino fields, Fy,, = 20},a,,), and ... involve
derivatives of a,, and £%.

To compute the functional integral over the worldsheet fields, one first uses the free
field OPE’s to integrate out the non-zero modes. Note that as in topological string theory,
computation of the partition function for the non-zero modes is trivial because of cancel-
lations between bosonic and fermionic fields of equal spin. The worldsheet zero modes are
then integrated out using the measure factors described in [[[(] and the regulator A" of P.4.

3. Four-point one-loop and two-loop computations

As was shown in [ and [d] using the minimal pure spinor formalism, the kinematic factors
for the massless four-point one-loop and two-loop amplitudes are proportional to the pure

spinor superspace integrals

K -toop = (AA) ™ W) (0" W) Fo), (3.1)
Ko joop = (MYPTN) F i FpgFrs( Ay W)), (3.2)

where A,, W%, and F,,, are the spinor gauge superfield, spinor superfield-strength, and
vector superfield-strength of the four external super-Yang-Mills multiplets, the expressions
of B.1] and B.d are summed over permutations of the four external superfields, and the
pure spinor measure factor ( ) is defined such that ((Ay"0)(AY"0)(AVP0)(0Vmnpt)) = 1.
In [§] and [, the purely bosonic contributions to these pure spinor superspace integrals
where shown to correctly reproduce the tg index contractions of the four Yang-Mills field-
strengths.

It will now be shown that the non-minimal computation of the four-point massless
one-loop and two-loop amplitudes contains the same kinematic factors as in [§, []. Since
the moduli space part of the amplitude computations in the minimal and non-minimal
formalisms is the same, this proves the equivalence of the two prescriptions for these am-
plitudes.

3.1 One-loop computation

Using the one-loop prescription of R.1], the regulator A" of .4 can provide a maximum of
eleven d, zero modes, which are multiplied by the eleven s zero modes. So the remaining



five d, zero modes must come either from the vertex operators or from the single b ghost.
Since the three integrated vertex operators can provide at most three d, zero modes through
the terms (W®d,,), the single b ghost of must provide two d,, zero modes through the
term

(X'Ymnpr) (dYmnpd)
192(AN)2.

(3.3)

After integrating over the zero modes of the dimension one fields (wq, W®, dy, $*) using
the measure factors described in [I{], one is left with an expression proportional to

/ d'%e / [dA][d][dr]AX) 2N (Y™ Pr) AW W W exp(—AX — ) (3.4)

= / d'®g / [dN][dN][dr] exp(=AX — 70)(AN) "2 (N2 (NP D) AW W W (3.5)

where D, = 80% + %(ymﬁ)a(?m is the usual superspace derivative and the index contractions
on

(MNAN™P DYAW W W (3.6)

have not been worked out. Note that B.5 is obtained from B.4 by writing 7, exp(—r) =
60% exp(—r0), integrating by parts with respect to 6, and using conservation of momentum
to ignore total derivatives with respect to x. Furthermore, the factor of (A\)* in B.4 comes
from the A in the unintegrated vertex operator, the 11 factors of A and A which multiply
the zero modes of d, and s, in N, the factor of (A\)~8(\)~® in the measure factor of wg
and w®, and the factor of (A\)~2 in the measure factor of s%.

Fortunately, it is easy to show there is a unique Lorentz-invariant way to contract
the indices in B.6. To show this, first choose a Lorentz frame in which the only non-zero
component of A\* is in the AT direction. This choice preserves a U(1) x SU(5) subgroup of
SO(10), under which a Weyl spinor U% and an anti-Weyl spinor V,, decompose as

«a a ab
U e (Ug;Ué[ab];U_%> 9 Va — <Vg+,v_[%},v+ga> s (37)

where the subscript denotes the U(1) charge.

Since (AT)* carries +10 U(1) charge, (A\Y™PD)AWWW must carry —10 U(1) charge
which is only possible if (AY"" D) carries —3 charge, A, carries —g charge, and each W¢
carries —2 charge. Contracting the SU(5) indices, one finds that the unique U(1) x SU(5)
invariant contraction of the indices is

A Ay D) AL WEWEWE, (3.8)

Returing to covariant notation, one can easily see that B.6 must be proportional to the
Lorentz-invariant expression

(Mmnp D) AA) (A" W) (A" W) (AP W), (3.9)

which reduces to B.§ in the frame where AT is the only non-zero component of \%.



However, to express the kinematic factor as an integral over pure spinor superspace as
in B.1), it is convenient to have an expression in which all \,’s appear in the combination
(A%Xy). If all X’s appear in this combination, one can use that

/ d'9 / [AN][dN][dr] exp(=AX — r8)OXR) " ANNY fug (3.10)

is proportional to

NNONY fo5.). (3.11)

To convert B.9 to this form, it is convenient to return to the frame in which AT is the

only non-zero component of \* and write B.§ as
) eapeae N D, — X, DI A Wewtwe, (3.12)
Using the superspace equations of motion for A, and W%, it is easy to show that
DyA, =D . W*=0, DA, +D, A% =0, epog DW= F,. (3.13)
So is proportional to two terms which are
AN Xt €apede (DL AW WPWE  and (AN AL WOWPE,,. (3.14)
The second term in can be easily written in covariant language as
(AN A (MY W)Y AN W) Fran, (3.15)

which produces the desired pure spinor superspace integral of B.1l And the first term
in can be written in covariant language as

AN [AD)Y A A)] MW ) (W Yy W), (3.16)
which produces the pure spinor superspace integral
([AD)Y A" A) | (AP ) (W A W) (3.17)
But since BRST-trivial operators decouple,
((AD) [(MY™™ A) MW ) (W Ay W)]) = 0,
which implies that is equal to
(A" A)AD) [(MP W) (W Ay W)])- (3.18)

Finally, using the superspace equation that D,W? is proportional to (Wmn)f F™ one
finds that is proportional to B.]. So the non-minimal computation of the kinematic
factor is proportional to the minimal computation of B.1].



3.2 Two loops

To compute the kinematic factor at two loops using the non-minimal prescription of .3,
first note that the regulator N can provide 22 d,, zero modes which are multiplied by the 22
zero modes of s*. So the remaining 10 d,, zero modes must come from the four integrated
vertex operators and the three b, ghosts. This is only possible if each integrated vertex
operators provides a d, zero mode through the term (WW%d,,) and each b ghost provides
two d,, zero modes through the term of B.J.

After integrating over the zero modes of the dimension one fields (w

I —la gl o
o W ,da’s )

using the measure factors described in [[[(], one is left with an expression proportional to
/ d'®e / [dN][dN][dr](AN) S (N O™ Pr 3 W W W W exp(—AX —r8)  (3.19)
= / ‘%o / [dN][dN][dr] exp(=AX — 70) AN) "SNP DPWWW W (3.20)

where the index contractions on
(N O™ P DYSWW W W (3.21)

have not been worked out. Note that the factor of (A)® in comes from the 11g factors
of A and \ which multiply the zero modes of d%, and s in N\, the factor of (\)~89(\)~8 in
the measure factor of w) and w’®, and the factor of (A\)™39 in the measure factor of s/,
As in the one-loop four-point amplitude, there is fortunately a unique way of contract-
ing the indices of in a Lorentz-invariant manner. Choosing the Lorentz frame where
AT is the only non-zero component of A%, one finds that (AT)® contributes +15 U(1) charge
so that each (A\y™"” D) must contribute —3 charge and each W must contribute —% charge.
Since the —3 component of (A} D) is (X[ab} Dy —X; D), and since D, annihilates the

—% component of W, the only contribution to B.§ comes from a term of the form

(AN ()3 (Dl pled plefly (wowhwiwky (3.22)

where the ten SU(5) indices are contracted with two €gpege’s.
The term of produces three types of terms depending on how the three D’s act
on the four W’s. If all three D’s act on the same W, one gets a term proportional to

AHSOL)PWWWOF, which by U(1) x SU(5) invariance must have the form
AN )P WAW W, Fye. (3.23)

And if two D’s act on the same W, one gets a term proportional to (AT)S(A )3 FWW oW,
which by U(1) x SU(5) invariance must have the form

AN ) R W oW o, We. (3.24)

Finally, if each D acts on a different W, one obtains a term that is proportional to
(AH)S(A\L)3WFFF, which by U(1) x SU(5) invariance must have the form

()‘+)6(XJr)g]:ab]:cd]:efoeadee- (325)



The first term in vanishes by Bianchi identities. And the second term in is
proportional to the first term after integrating by parts with respect to d, and using the
equation of motion J,W® = 0. So the only contribution to the kinematic factor comes
from the third term of B.25, which can be written in Lorentz-covariant notation as

()‘X):S()"Ymnpqr)‘)fmnqufrs()\'YSW)- (3.26)

So the non-minimal computation of the two-loop kinematic factor agrees with the minimal
computation of B.2.

4. Type-I anomaly with pure spinors

It will now be shown that the non-minimal pure spinor formalism computation of the
hexagon gauge anomaly in the Type-I superstring is equivalent to the RNS result of [[[3].
As will be shown below, the kinematic factor of the hexagon gauge variation can be written
as the pure spinor superspace integral

K = (0" W) (A" W) P W W0y W),

whose bosonic part is the well-known €10 RNS result of [[L3].

As discussed in [[[4, [[§], the anomaly can be easily computed as a surface term which
contributes at the boundary of moduli space. The result can be separated in two parts:
the kinematic factor depending only on momenta and polarizations, and the moduli space
part which depends on the worldsheet surface. We will be interested only in the kinematic
factor, as the moduli space part uses identical computations as in the anomaly analysis
using the RNS formalism.!

4.1 Kinematic factor computation

In the type-I superstring theory with gauge group SO(N), the massless open string six-point
one-loop amplitude is given by

00 6
A=Y Gy /0 dt (N / dwb(w)()\Al)l_[Z / AU (2)) (4.1)

top=P,NP,N

where P, NP, N denotes the three possible different world-sheet topologies, each of which
has a different group-factor Gy, 7. When all particles are attached to one boundary, we
have a cylinder with Gp = Ntr(t*1¢%2¢*¢*¢%¢%). When particles are attached to both
boundaries, the diagram is a non-planar cylinder, where Gyp = tr(t%¢2)tr(t?3¢*¢%¢%).
And finally, there is the non-orientable Mobius strip where G = —tr(t%1¢*2¢*3¢%4¢%¢%),

We will be interested in the amplitude when all external states are massless gluons with

polarization e’ i.e., a’ (z) = e, e** where m = 0,...9 is the space-time vector index and

r is the particle label.? To probe the anomaly, one can compute [i.]] and substitute one of

LA pedagogical presentation of these computations can be found in .
*We will omit the adjoint gauge group index from the polarizations and field-strengths for the rest of
this section.



the external polarizations for its respective momentum. However, instead of first computing
the six-point amplitude and substituting e,, — k;, in the answer, we will first make the
gauge transformation in [L.1 and then compute the resulting correlation function. This will
give us the anomaly kinematic factor directly.

Under the super-Yang-Mills gauge transformation

§Aq = Do, 6An = 0, (4.2)

the integrated vertex operator [dzU changes by the surface term [ dz0U = [ dz09, and
the unintegrated vertex operator changes by the BRST-trivial quantity 6(AA) = A*D,Q =
QN. Choosing Q(z,0) = €7 has the same effect as changing e™ — k™, which is the
desired gauge transformation to probe the anomaly.

To compute the gauge anomaly, it will be convenient to choose the gauge transforma-

1

-, in the unintegrated vertex operator, so that the gauge

tion to act on the polarization e
variation of [l.] is

o0 6
(S.A: Gtop dt N dwb(w QQ z dZTUr z)). 4.3
o - atw | duston G ll R AT

“Integrating” ) by parts inside the correlation function will only get a contribution from the
BRST variation of the b-ghost, which is a derivative with respect to the modulus [14, [L§].
So

00 6
S — _Zamp/o dt%(Q(zl)/\/’g/derr(Zr»

top

~K 3" Giop| Biop(0) = Buop(0), (4.4)

top

where the moduli space part of the anomaly is encoded in the function

t 26 25 e 23 6 ”
Biop(t) E/O dz6/0 dz5/0 dz4/0 dzg/o dzs <H DI Diop,
r=1

and K = (NU2UsU,UsUs). From [1.4, it is clear that the anomaly comes from the boundary
of moduli space.

To compute the kinematic factor K, observe that there is an unique way to absorb
the 16 zero modes of d, 11 of s* and 11 of r,. The regularization factor N/ must provide
11 dgs, 11 s* and 11 r, zero modes. The five remaining d, zero modes must come from
the external vertices® through (dJ/)®. As in the computations of the previous section, the
kinematic factor is thus given by a pure spinor superspace integral involving 3 A’s and 5
W'’s, as can be easily verified by integrating all the zero mode measures except [d)], [d)]
and [dr]. To find out how the indices are contracted in K, choose the reference frame where

3Tt follows from this zero mode counting that the anomaly trivially vanishes for amplitudes with less
than six external massless particles.

,10,



only AT # 0. Then one can easily check that the unique U(1) x SU(5)-invariant contraction
is

K = (A1) eqpeac W WIWEWEWE,
which in SO(10)-covariant notation translates into

K = (0™ Wa) (9" W) AP W) (Ws Yoy W)- (4.5)

4.2 Bosonic contribution to the kinematic factor

When all external states are gluons, there is only one possibility to saturate the pure
spinor superspace correlation A\30°. Each superfield W< (#) must contribute one 6 through
the term —1(y™"0)*F,,,. Thus, the kinematic factor [L.j is proportional to

(APy™220) (A Ty ™22 0) Xy 4740) (09" Yy Y™ O) Fr - - By (4.6)

maona* meneg"*

We will now demonstrate the equivalence with the RNS anomaly result of L] by proving
that

1
()\,yp,ymun 9)()\,yq,ym2n2 0)()\,yr,ym3n36) (07m4n47pqr7m5n59) — Eemlnlmmsns . (47)

We will first show that the correlation in [[.7 is proportional to €19 by checking its
behavior under a parity transformation. Using the language of [], we can rewrite [I.7 as

(Tfl)(aﬁ’y)[mp2p3p4p5]T(am)wl&ﬁg&&s](7m1n1)5[1)1( m2n2)5[2)2( m3n3)523 (7m4n4)5;4( m5n5)525,
(4.8)
where T and T~! are defined by
(Tfl)(alagag)[5152535455] — (,ym)alél (,Yn)agég(,Yp)agég(,ymnp)5455 (49)

_am o an P
T(a1a2a3)[6162636465] = Yo 61 Vaz62 Vs s ('Ymnp)54557

and the a-indices are symmetric and gamma matrix traceless, and the d-indices are anti-
symmetric. Since a parity transformation has the effect of changing a Weyl spinor ¥“ to
an anti-Weyl spinor 1, it follows from the definitions of .9 that a parity transformation
exchanges T < T~!. Furthermore, since a parity transformation also changes

mn)ép N (,}/

mn)p:

§=-0"

(r}/ J?

it readily follows that the kinematic factor f.§ is odd under parity, so it is proportional to
€19- Finally, the proportionality constant of % in [.7 can be explicitly computed using the
identities listed in appendix A.

5. tg and €9 from pure spinor superspace

In this section, we describe some interesting identities involving the tg and €1g tensors and
show how they are closely related when obtained from pure spinor superspace integrals.
This is different from computations in the RNS formalism where tg and €19 come from
correlation functions with different spin structures.

— 11 —



Since the one-loop tgF* and e;gBF; terms are expected to be related by non-linear
supersymmetry, there might be a common superspace origin for the tg and €1y tensors.
This suggests looking for a BRST-closed pure spinor superspace integral involving four
super-Yang-Mills superfields whose bosonic part involves both the tg and €;g tensors. One
such BRST-closed expression we found is

MY WH O W MY W) (074, WD), (5.1)

Although p.1] is not spacetime supersymmetric because of the explicit 6, it might be related
to a supersymmetric expression in a constant background where the N = 1 supergravity
superfield G, satisfies Gpq = 7ma595 + by (770) o, for constant by, .

When restricted to its purely bosonic part, f.1] defines the following 10-dimensional
tensor:

g TN — (N 9) Ay Py 2120) (A Y872 0) (07 Yabey ™). (5.2)
Using ™4™ = 4™ + ™" we obtain
g mmenamana At — Ayt G)(AyPy 212 0) (Ay Y830 (67 Yapey ™)
™ (A By ) (A Y 220) (A 20) (0 aey ™ 40)(5.3)
And using the identities listed in appendix A, one can check that?

tmnml n1ManN2mM3nN3mang __
10

mntm1n1m2n2m3n3m4n4 . 1 mnminimanamsansmang 5.4
8 € .

45 2

where the tg tensor is defined as usual by its contraction with four field-strengths to give

g T F iy = +8(F T FPFAFY) 4 8(F FAFPFY) + 8(F FAF'F?)
—2(FYF?)(F3F*) — 2(F2F3)(FYFY) — 2(F'F3)(F?FY).

It is also interesting to contrast the similarity between €15 and tg when written in terms
of the T and T~ tensors:

MIVMAN. AN (T—l)(aﬁfy)[poplpgpgpdT(aﬁ,y)[6061626364] (,ymn)égo. ) ‘(,ym4n4)6;)14 (5.5)

mini )51 (,ym4n4)54

Mming...mqng —1\ (aBv)[kp1p2p3p4]
tg x (T77) R e

Topy) (61626364 (Y

which shows, in a pure spinor superspace language, how one can “obtain” the tg tensor from
€10: it is a matter of removing (77”")600 and contracting the associated spinorial indices
in 7 and T~'. So when using pure spinors, there is a close relation between these two

different-looking tensors.
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A. Pure spinor superspace identities

In this appendix we list all the identities used throughout this paper. They were obtained

with the inestimable help of Ulf Gran’s GAMMA package [[J] along with some custom-

made functions to handle €19 tensors. The convention used for antisymmetrization of n

indices is that one must divide by} n!. Furthermore, it is sometimes more convenient to use
an

the notation §%.-% = 6,[% . Omy, €.,

jaaz % (5a1 502 _ a2 §a1 ) ,

mima2 mi1-ma2 mi1-ma2

and — for notational simplicity — not care about the difference between downstairs and
upstairs indices in the formulze.

A.1 Identities ad nauseam

The computation of a correlation like
(AT ™M) (A" ™220) (AP 0) (074 Ymmpy " 0) )

or
(™ 0) (™™ 0) (X >y ™2"20) (64" y ey 474 )

requires a lot of identities, which will be listed below.
We first define (07™4™4 5,755 0) = GATATST5 (§~"172736). One can check that

mnprirars
Granamsns _{_1 MMAMENNANSPT1T2TS _ 9 §NP  §MIN4TNS + 1987515 FMman (A 1)
mnprireors 66 nansYrirars nap Yrirars .
R SMEN5 SMM4ang mang SMMsn m4ng SMMsns
65np 5r1r2r3 + 125n5p 5r1r2r3 65np 5r1r2r3

=207 007 Py + [mmp] + [mana] + [msns),

and +[mnp| + [myny4] + [msns] means that one must antisymmetrize in those indices.
The computation of tg also requires the identity (§y*°y™mng) = (Gm172734) K 2bemn

r17T2T3 0
where
Kabcmn — _cn 6abm 4 pem 6abn + bn gaem bm gaen  _ an 5bcm 4 pom 6bcn
r17T2T3 M Opyrars T 11 riragry T 11 Opjrory — 71 rirars — 11 Opirorsy T 7] r1T2T3
The following identity is also useful®
1
™) (M T56) = — 2 (69 0) 0™ Py A) (A2)
1

()\,Yabcde)\) (e,ytuva)fggggloeqtzz

96

where

fmnpqrs _ 18(

rs gabcde np sabede mn sabcde
abcdetuv uv 5mnpqt - 5uv 5qrsmt + 5qr 5pstuv) (A?’)

—|—54(6;L:5ab6d6 _ 5;2}))5abcde 6p85abcde ) + [mnp] + [QT’S] + [tuv].

mpqtu gsmiu + tv Ymngru

This identity was suggested by Pierre Vanhove during discussions of [E]
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Using the gamma matrix identities

(AY"y"0) = (Ay™7P0) + 1™ (AP0) — P (M"0),
(M ™oy ™0) = + (M ™e0) — 2642 (\*0) + 267 (M"0) — 253, (\°0)
=02 0) +05(Xy " 0) + 3¢ (A1) — b (Ay"°0) =62 (A "*0) + 85 (M "*°0)

and the definitions above, all correlations considered in this paper turn into a linear com-

bination of the following building blocks:

1 mn
(™0 (X" 0) (X"0) (07i510)) = Tos0i3i” (A4)
mn 1 m n
(O9"™"8) (V7)) (673520)) = =010y (A.5)
1 ..
(A8) (™" 8) (AyI7*0) (6ijp)) = oy FmmPTrst 4 (A.6)

8400
1 [m cn__pllgsr 58] g 57 s][m sn 5]
=5 [0 S teag o — ol g lm ey
_% |:77t[i770[q5§778} [m 21513] _ nt[inv[méglnp][Q5£]5g]}.

1 2
— prlmgn sp rl 2 slmenep cq or] sv
35" O[50¢ ] 03O, 355[3 0¢'0,10(40g'0p)  (AT)

1 1 b dgel

+ m e abede (% ,,7” [06[8 61?77“] [f(sg 62]
2

35

mnpqr U 4 m cn r| cu m en T cu
(™™ X) (A 0) (07410 (675106)) = — = [5@. Sponotorloy + o/l anoh oloay  (A8)

(™ PT0) (Ays1a) (A 0) (01 7g10) =

[a bge sd cel v
526700 ghsh]>

[s 7 7]

1 [m n r|u 1 [m n riu
— 50 Ok mysSySn™ — 587 O myoRon” }

L nper [achsesd selsu | slashbee sd s€l su
T1050°  abede [%‘ 01011010 Op) 00 O 0750, Oy

1[ab ccd , elu 1[ab c od, elu
—59 Sp 0o — 250170950k ] }
mnpqr _ 1 mnpqr 1 mnpqr
<()‘7 P 9)()‘7d0)()‘769)(97f9h9) - _Eédefgh - 50406 defgh (Ag)
12 s uj|lm sn T
(™77 X) (X 6) (0 718) (03006)) = == | 8153417330, 31y (A.10)

53 57"} - nv[s 56‘77“] [mégnh“ 5£5q 57"}

+00saf e of 010, T

J lf

1
v|s gt ullm gn T mnpqr
-n [ 6[177 . 6]977[][106552}6”]] - ﬁe e abcede

s ullasb sc sd el [s u]lasb sc sd g€l
[5[f5§77 W63 05,0807 + o0k o006,
v[s ulla b c ¢d ge
-n [ 5ff77 I 5977h}[j5k5z] v]

=" 8,1 8557 55]} :
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mn TS 3 il men a
(A™PG) (A 0><A%w0)<0ma):—ﬁ[—agafqaflag RIS

isi k] slmen a [¢ ¢5. k][m n <P
+81, 61,640,101 5116 + 61 5 0 g 507

+88n 0 10100

(A.11)

=38 a0y — 08 0|

abcde fmnpqrs

+33600 a1a2a3a4asJ abede fgh
[t cu_ vl|[ay cas cas caq s05) [t cu vllay saz sas saq <@5)
=™ 0t 8 a0 o 027

_nZ[t(gﬁnv] [a1 5;,12 1k [£023 5%15?5}] )
These identities can be straightforwardly derived. The recipe is the following. One writes
the most general tensor containing Kronecker deltas with the same symmetry properties as
the left hand side and then contracts some appropriate indices to find the coefficients which
satisfy the normalization A5 = 1. After obtaining all terms containing only Kronecker
deltas one can find terms with 1o tensors considering the duality properties of the gamma
matrices:

— l mi1mam3maqmsninanangns

of = _|_5! € ('}’nlngngnuls)aﬁ )

m1m2m3m4m5)

(v

m1m2m3m4m5m6) B8 _ +i M1M2Mm3mamsmen1nanzng ( ) B
a 4|€ Tningngna)a >

(v

— i m1m2m3m4msmenmyrninana

afB _3!6 (%11712”3)@5 ;

m1m2m3m4m5m6m7)

(v

m1m2m3m4m5m6m7m8) 8 — __ M1m2m3m4msmemrmsgnin2
[e%

(v 2,6 ('Ymm)aﬁ'

The following identities turn out to be useful when doing all these manipulations and
can be derived using the properties of pure spinors and gamma matrices:

(V") oy ()™ = 48 (8305 = 8J08) - Coymt)M9™€) =0 W, €% (A12)
(AP N (Mmna®) = 0, (Ay™™P7"X) (M) = 0 (A.13)
(AY0) (Maf) = 200 (M0),  (Ay™mO)(My™0) = —4(M"0)(M"0)  (A14)
(AY™ P N) (0yapel) = 96(AY™0)(Ay"0), (A.15)
(A 0) (Myapel) = —36(Ay™0)(Ay"0), (A.16)
(A YPm10) (Ayaned) = —28(Ay™0)(A\y"0), (A.17)

(A0 (A 90) = —(My“0)(AM°0) + (M"P0) (A °0) + (A"°0) (Ay0)

—(MP9) (AY°0) — (AP 0) (Ay0) + 0 (Ay8) (Ay°0)
+17¢ (Ay°0) (A 10) — 0P (Ay°0) (Ay°0) (A.13)
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()\,yabcdee)()\,yaghe) — —|—()\’)/hb6d69)()\’)/g9 _

) = (7 0) (X"0) + (") (A"
~(X"0)(\y""0) +

) )
MPE0) (M) — (M P°0) (Ay"9"0)
—n"e(AYe40) (My90) + 0" (Ay"0) (A 90) — (A e0) (A90)
+" (A°€0) (AY90) + 09 (My"°40) (Av"0) — 7t (Ay"e0) (A" 0)
+07° (M0 (A1) — 09 (My"0) (\"0)
(Ay™Pt9) (Ay™h ) = —An ™ (Ay°0) (A7) + dn™ (A 0) (Av°0) — A" (Ay*0) (\y°0)
—2(\y°%0)(\y"0)

o~ o~

A.2 Other pure spinor representations for tg and ¢

The following correlations also give rise to identities for tg and €,
M) (MW H My WA (W34 W) + perm(1234),
()q“Wl)()quZ)()q"Wg)(Gym%bW‘l) + perm(1234).

Indeed one can show that

116

(A10) (yary ™™ 0) (Ay 2720 (073 My 4 G) - p(1234) = — e A
16
T (A"0) Ay ™™ 0) (Vs ™220) (0775994 40) + p(1234) = AT

2
()\,ya,ymlnl0)()\,yb,ymgng0)()\,y[n,ymg,ng,e)(e,ym},yab,ym4n40) + p(1234) _ ﬁemnmlnl...m4n4

1
nmn()\,ya,ymlnle)()\,yb,meHQH)()\,yn,ymgnga)(e,ym,yab,ym4n40) + p(1234) — _1_§tgn1n1...m4n4.
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